KEANEKARAGAMAN ARTHROPODA DI EKOSISTEM TANAMAN PADI RATUN YANG DIAPLIKASIKAN BIOINSEKTISIDA Beauveria bassiana

Sumini¹*), Siti Herlinda² dan Chandra Irsan²

^{1*)}Dosen Agroteknologi Fakultas Pertanian Universitas Musi Rawas

²⁾Dosen Proteksi Tanaman Fakultas Pertanian Universitas Sriwijaya

*) Corresponding Author: <u>sumini.fpunmura@gmail.com</u>

Hp. 081272143030

Abstrak

Penelitian ini bertujuan untuk mengetahui keanekaragaman arthropoda di ekosistem tanaman padi ratun yang diaplikasikan bioinsektisida *Beauveria bassiana*. Penelitian dilaksanakan pada bulan Agustus - Oktober 2013. Metode yang digunakan dalam penelitian ini adalah metode eksperimental dengan menggunakan dua perlakuan dan empat ulangan. Pengambilan artropoda di tajuk dilakukan dengan menggunakan jaring serangga yang dilakukan 15 kali ayunan ganda. Hasil penelitian menunjukan bahwa populasi hama dari umur 1-8 minggu setelah potong menunjukan hasil yang berfluktuasi. Hasil analisis dengan menggunakan uji *chi-square* populasi hama antara petak yang diaplikasikan bioinsektisida dengan petak kontrol tidak berbeda nyata. Persentase serangan hama di tanaman padi ratun akibat serangga hama meningkat dengan bertambahnya umur tanaman. Persentase serangan tanaman padi ratun tertinggi pada umur 7-8 msp. Indeks keanekaragaman ditajuk tertinggi pada petak kontrol, namun di permukaan tanah tertinggi terjadi di petak yang diaplikasikan bioinsektisida.

Kata kunci: Keanekaragaman, Arthropoda, Bioinsektisida, Padi

PENDAHULUAN

Padi (*Oryza sativa* L) merupakan tanaman pangan utama yang banyak dibudidayakan petani, karena sebagian besar masyarakat indonesia mengkonsumsi beras sebagai makanan pokoknya. Sehingga upaya peningkatan produktivitas padi terus dilakukan dengan cara memanfaatkan tunggul jerami padi atau yang dikenal dengan istilah ratun. Padi

ratun merupakan hasil dari pemanfaatan tunggul jerami padi yang ditanam pada musim sebelumnya dan dapat menghasilkan malai kembali. Padi ratun akan mengeluarkan anakan baru dan dapat dipanen kembali setelah 45 hari dari pemotongan batang padi utama (Suwandi et al., 2012).

Pemanfaatan ratun dapat memberikan keuntungan bagi petani, karena tanaman tersebut dapat dipanen kembali dari tanaman padi utama. Menurut Susilawati et al., (2010) memanfaatkan ratun dapat mencapai hasil 50% dari panen Selain itu juga pemanfaatan pertama. ratun juga dapat menghemat biaya penanaman dan tenaga kerja (Suwandi et al., 2012). Tunggul padi yang tersisa akan mengeluarkan tunas-tunas baru yang tumbuh menjadi anakan dan akan membentuk malai. Padi ratun produktivitasnya lebih rendah dari pada padi utama, untuk itu upaya peningkatan produktivitas terus dilakukan, termasuk diantaranya adalah melindungi padi ratun dari serangan hama dan penyakit.

Petani umumnya masih menggunakan insektisida sintetik dalam serangga mengendalikan hama pertanaman padi. Penggunaan insektisida dapat mencemari lingkungan, resistensi hama dan mempengaruhi musuh alami. kelimpahan Untuk mengatasi permasalahan tersebut diperlukan suatu alternatif pengendalian menggunakan pestisida hayati yang mengandung iamur entomopatogen. Herlinda et al. (2008) mengemukakan bahwa penggunaan agens hayati jamur Beauveria bassiana (Bals.) Vuill (Deuteromycetes: Moniliaceae) menjadi alternatif untuk mengurangi penggunaan pestisida sintetik. Penggunaan pestisida hayati relatif aman terhadap lingkungan,

mampu menekan populasi serangga hama dan memberikan dampak positif terhadap kelimpahan musuh alami (Radianto *et al.*, 2010).

Jamur В. bassiana mampu menginfeksi serangga hama yang tergolong ke dalam ordo Hemiptera (Herlinda et al., 2006), Lepidoptera (Prayogo et al., 2005), Homoptera dan Coleoptera (Prayogo, 2006). Penelitian ini menggunakan bioinsektisida yang aktif berbahan В. bassiana dengan formulasi cair yang bahan pembawanya EKKU (ekstrak kompos kulit udang) steril.

Penelitian ini bertujuan untuk mengetahui keanekaragaman artropoda di ekosistem tanaman padi ratun yang diaplikasikan bioinsektisida *Beauveria bassiana*.

METODE PENELITIAN

Penelitian dilaksanakan di sentra pertanaman padi sawah lebak Pemulutan, Kabupaten Ogan Ilir Sumatera Selatan bulan Agustus-Oktober 2013. pada Identifikasi serangga di tajuk dan di dilakukan permukaan di tanah Laboratorium Entomologi **Fakultas** Pertanian Universitas Sriwijaya Inderalaya.

Alat yang digunakan dalam penelitian ini adalah botol vial, gelas plastik, jaring serangga, karet gelang, knapsack sprayer 15 L, kuas, mikroskop,

plastik bening, saringan berpori 1 mm, paralon dan pompa air. Bahan yang digunakan dalam penelitian ini ialah benih padi varietas Situbagendit, alkohol 70%, dan formalin 40%.

Metode yang digunakan dalam penelitian ini adalah metode eksperimental dengan menggunakan dua perlakuan dan empat ulangan. Penelitian menggunakan bioinsektisida cair yang terbaik dari penelitian sebelumnya yaitu bioinsektisida berbahan aktif jamur Beauveria bassiana dan dilihat pengaruhnya pada tanaman padi ratun. Lahan yang digunakan untuk tanaman ratun seluas 2 ha. Dalam 1 ha dibagi menjadi 2 petakan dan dibuat subpetak dengan ukuran 10x10Pengamatan pengaruh aplikasi bioinsektisida pada tanaman ratun dilakukan sejak tanaman berumur 1-8 minggu setelah pemotongan (panen).

Pengamatan serangan hama dilakukan dengan mengamati dan menghitung serangannya pada rumpun padi pada tanaman sampel (25 rumpun per Pengambilan artropoda di subpetak). tajuk dilakukan dengan menggunakan jaring serangga yang dilakukan 15 kali ayunan ganda. Penjaringan dilakukan pada pagi hari dari pukul 06.00-08.00 WIB. Artropoda yang tertangkap selanjutnya diidentifikasi di Laboratorium Entomologi Jurusan Hama dan Penyakit Tumbuhan Fakultas Pertanian Universitas Sriwijaya.

Pengambilan artropoda di permukaan tanah menggunakan lubang jebakan. Lubang jebakan yang dipasang ada 4 unit/100m² dan dipasang selama 2 x 24 jam. Artropoda predator yang tertangkap dibersihkan dan diawetkan dalam botol vial yang berisi alkohol 70%, selanjutnya dilakukan identifikasi.

Populasi serangga hama dan serangannya dianalisis dengan menggunakan uji *chi-square*. Aspek yang diamati dalam menganalisis keanekaragaman hayati antara lain, yaitu kelimpahan jumlah spesies dan jumlah individu, indeks keanekaragaman, indeks dominasi, dan indeks kemerataan.

PEMBAHASAN

1. Populasi dan persentase serangan serangga hama

Hasil penelitian menunjukan bahwa populasi hama dari umur 1-8 minggu setelah potong menunjukan hasil yang berfluktuasi. Hasil analisis dengan menggunakan uji *chi-square* populasi hama antara petak yang diaplikasikan bioinsektisida dengan petak kontrol tidak berbeda nyata (Tabel. 1). Prayogo (2006) menyatakan bahwa keefektifan jamur dalam entomopatogen menginfeksi serangga hama jika kelembaban diatas 90%. Kelembaban yang tinggi sangat dibutuhkan oleh jamur entomopatogen untuk berkembang. Selain itu keefektifan jamur entomopatogen ditentukan oleh sinar matahari yang dapat merusak konidia jamur dan menghambat perkembangan konidia (Prayogo, 2005).

Rata-rata populasi hama wereng dan walang sangit pada petak yang diaplikasikan bioinsektisida B. bassiana lebih rendah dari kontrol. Herlinda et al.(2012) mengemukakan bahwa lahan yang diaplikasikan bioinsektisida В. bassiana rata-rata populasi nimfa A. gossypii lebih rendah dari lahan tanpa aplikasi bioinsektisida. Menurut Khodijah (2013)bahwa bioinsektisida diaplikasikan ke lapangan dapat menekan populasi serangga hama.

Populasi hama selain dipengaruhi aplikasi bioinsektisida juga adanya peran musuh alami di lapangan. Irsan (2003) mengemukakan bahwa penggunaan musuh alami terbukti efektif dalam mengendalikan hama daun. kutu Memanfaatkan musuh alami di lapangan dapat menjaga keseimbangan ekosistem Radianto et al. disekitar pertanaman. (2010)mengemukakan bahwa pengendalian hama dengan memanfaatkan musuh alami dapat menjaga populasi serangga hama tetap berada di bawah ambang ekonomi.

Serangga hama yang ditemukandi lahan penelitian terlihat lamban bergerak. Hal itu disebabkan jamur B. bassiana masih terkandung di dalam jaringan tanaman dan mampu bertahan hidup didalam tanah sehingga dapat menginfeksi serangga hama yang datang pada musim berikutnya. tanam Deciyanto Indrayani (2008) mengemukakan bahwa konidia B. bassiana yang mampu bertahan hidup didalam tanah dalam kurun waktu yang cukup lama akan menjadi inokulum sumber infeksi bagi generasi hama berikutnya.

Hasil penelitian menunjukan bahwa persentase serangan hama di tanaman padi ratun akibat serangga hama meningkat dengan bertambahnya umur tanaman. Persentase serangan tanaman padi ratun tertinggi pada umur 7-8 msp (Tabel. 2). Bioinsektisida diaplikasikan yang berpengaruh pada persentase serangan hama. Hal tersebut diketahui pada petak diaplikasikan bioinsektisida yang lebih rendah persentase serangan dibandingkan petak kontrol. Herlinda et al.(2012) melaporkan bahwa bioinsektisida aktif В. berbahan bassiana dapat menurunkan persentase serangan hama secara signifikan. Bioinsektisida yang diberikan secara kontinu akan menekan serangan hama (Manuwoto dan Indriyani, 1994).

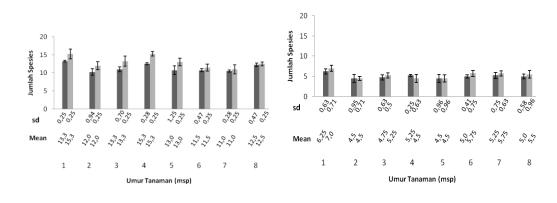
Bioinsektisida yang telah diaplikasikan berpengaruh pada populasi serangga hama dan tingkat serangan hama. Herlinda (2006) mengemukakan bahwa beauvericin dan bassianolid yang dihasilkan jamur B. bassiana mampu melemahkan system kekebalan tubuh serangga. Deciyanto dan Indrayani (2008) melaporkan bahwa serangga hama yang terinfeksi B. bassiana imunitasnya akan menurun dan akan berhenti makan.

Kelimpahan artropoda predator di tajuk antara petak yang diaplikasikan boinsektisida dengan kontrol tertinggi pada lahan kontrol. Tingginya jumlah individu dan spesies artropoda predator pada petak kontrol dikarenakan serangga hama yang ada pada petak tersebut berlimpah. Radianto *et al.* (2010) mengemukakan bahwa adanya kaitan yang erat antara keanekaragaman spesies predator dengan kelimpahan populasi serangga hama.

Tabel 1. Populasi hama pada padi ratun umur 1-8 minggu setelah potong (msp)

		Populasi Hama								
Umur	Spesies	Pengamatar	ı Visual	- Uji <i>chi-</i>	Pengamatar	Ujichi- square				
Padi		(ekor/100 r	umpun)		(ekor/60 ayun					
(msp)		Bioinsektisid		square	Bioinsektisid					
		a	Kontrol		a	Kontrol				
	Nilavarphatalugens	2	6		5a	8a	0,40			
1	Nephotettixverescens	2	3		2	4				
1	Racilliadorsalis	3	4		4	7				
	Leptocorisaacuta	0	0		0	0				
2	Nilavarphatalugens	3	4		3	5				
	Nephotettixverescens	2	5		5a	12a	0,08			
	Racilliadorsalis	3	5		4	6				
	Leptocorisaacuta	0	0		0	0				
	Nilavarphatalugens	4	6		3	6				
3	Nephotettixverescens	3	4		6a	7a	0,78			
3	Racilliadorsalis	5	6		5a	6a	0,76			
	Leptocorisaacuta	0	0		0	0				
	Nilavarphatalugens	2	2		4	5				
4	Nephotettixverescens	3	4		3	5				
	Racilliadorsalis	4	4		5a	7a	0,56			
	Leptocorisaacuta	0	0		0	0				
5	Nilavarphatalugens	1	4		2	4				
5	Nephotettixverescens	2	3		1	5				

	Racilliadorsalis	2	5		3	5	
	Leptocorisaacuta	8a	12a	0,37	9a	12a	0,51
	Nilavarphatalugens	4	6		9a	16a	0,16
6	Nephotettixverescens	4	6		4	6	
U	Racilliadorsalis	2	5		2	5	
	Leptocorisaacuta	9a	13a	0,39	11a	13a	0,68
	Nilavarphatalugens	2	5		6a	13a	0,10
7	Nephotettixverescens	2	5		2	4	
,	Racilliadorsalis	3	3		3	5	
	Leptocorisaacuta	8a	10a	0,63	8a	10a	0,63
	Nilavarphatalugens	2	5		7a	9a	0,61
8	Nephotettixverescens	2	5		2	5	
o	Racilliadorsalis	3	6		4	6	
	Leptocorisaacuta	13a	15a	0,70	13a	15a	0,70
Total	Nilavarphatalugens	20a	38a	0,01	39a	66b	0,008
	Nephotettixverescens	20a	35a	0,04	25a	48b	0,007
	Racilliadorsalis	25a	38a	0,10	30a	47a	0,85
	Leptocorisaacuta	38a	50a	0,20	41a	50a	0,34


Keterangan: Angka-angka yang diikutiolehhuruf yang samapadabaris yang sama tidak berbeda nyata pada uji *chi-square*

Tabel 2. Persentase serangan hama wereng dan walang sangit pada padi ratun di petak yang diaplikasikan bioinsektisida dan kontrol

		Rata-rata persentaseseranganhama (%)							
UmurTanaman	Perlakuan		Uji						
(msp)		Wereng	chi-square	Walangsangit	chi-square				
1	Bioinsektisida	0,40		0,00					
1	Kontrol	0,60		0,00					
2	Bioinsektisida	0,57		0,00					
2	Kontrol	0,69		0,00					
3	Bioinsektisida	0,62		0,00					
3	Kontrol	0,73		0,00					
4	Bioinsektisida	1,09							
4	Kontrol	1,15		0,00					
5	Bioinsektisida	1,15		1,05					

	Kontrol	1,19		1,10	
6	Bioinsektisida	1,20		1,30	
Ü	Kontrol	1,29		1,48	
7	Bioinsektisida	1,29		1,39	
,	Kontrol	1,39		1,48	
8	Bioinsektisida	1,29		1,39	
o	Kontrol	1,39		1,48	
Total	Bioinsektisida	7,61a	0,83	5,13a	0,90
rotar	Kontrol	8,43a	0,03	5,54a	0,90

Keterangan : Angka-angka yang diikuti oleh huruf yang sama pada kolom yang sama tidak berbeda nyata pada uji *chi-square*

Keterangan:

i): Petak yang diaplikasikan bioinsek id (): Petak tanpa aplikasi

(kontrol), (): Simpangan deviasi

Gambar 1. Perbandingan jumlah spesies di tajuk padi ratun (a), perbandingan jumlah spesies di permukaan tanah padi ratun (b)

1. Keanekaragaman komunitas artropoda di tajuk dan permukaan tanah

Aplikasi bioinsektisida dapat mempengaruhi kelimpahan artropoda predator. Indeks keanekaragaman, indeks kemerataan dan indeks dominasi artropoda predator di tajuk tertinggi terjadi di petak kontrol (Tabel. 3). Tingginya keanekargaman artropoda predator di tajuk tanaman padi ratun di petak control disebabkan di petak tersebut masih alami. Selain itu tingginya keanekragaman itu juga dapat dipengaruhi oleh ekologi disekitar persawahan. Thalib *et al.* (2010) mengemukakan bahwa makin tinggi vegetasi

lain yang tumbuh disekitar pertanaman, maka makin tinggi keanekaragaman artropoda pada suatu ekosistem. Hal yang sama juga dikemukakan oleh Riyanto *et al.* (2011) bahwa habitat disekitar pertanaman akan mempengaruhi keberadaan serangga predator.

Di permukaan indeks tanah keanekaragaman dan indeks dominasi tertinggi terjadi di petak yang diaplikasikan bioinsektisida, tetapi indeks dominasi tertinggi terjadi di petak kontrol (Tabel. 4). Tingginya indeks keanekaragaman di petak yang diaplikasikan bioinsektisida diduga bahwa bioinsektisida yang diaplikasikan di petak tersebut tidak mempengaruhi kehidupan artropoda predator yang ada atau hidup di permukaantanah. Menurut Khadijah (2013) bahwa kelimpahan artropoda predator di permukaan tanah tidak dipengaruhi oleh bioinsektisida *B. bassiana*.

Semakin tingginya keanekaragaman artropoda predator pada suatu ekosistem maka semakin tinggi kestabilan populasi serangga di suatu ekosistem.

Tabel 3. Karakteristik komunitas artropoda predator di tajuk pada lahan yang diaplikasikan bioinsektisida dan kontrol di sawah lebak.

Karakteristik Komunitas di	Umur Tanaman (minggu setelah potong)							
Tajuk	1	2	3	4	5	6	7	8
Bioinsektisida								
JumlahIndividu	117	106	111	114	89	92	93	103
Indeks Keragaman (H')								
Indeks Dominasi (d)	2,47	2,31	2,34	2,54	2,57	2,46	2,17	2,47
Indeks Kemerataan (E)	0,30	0,30	0,27	0,18	0,25	0,22	0,31	0,28
	0,82	0,78	0,86	0,83	0,92	0,89	0,78	0,89
Kontrol								
Jumlah Individu	137	132	125	137	132	118	129	142
Indeks Keragaman (H')								
Indeks Dominasi (d)	2,89	2,56	2,47	2,86	2,70	2,50	2,54	2,52
Indeks Kemerataan (E)	0,21	0,32	0,28	0,15	0,28	0,24	0,24	0,23
	0,93	0,83	0,85	0,94	0,88	0,86	0,86	0,84

Tabel 4. Karakteristik komunitas artropoda predator permukaan tanah pada lahan yang diaplikasikan bioinsektisida dan kontrol di sawah lebak.

Karakteristik Komunitas di	Umur Tanaman(minggu setelah potong)								
Permukaan Tanah.	1	2	3	4	5	6	7	8	
Bioinsektisida									
Jumlah Individu	46	30	37	39	36	35	38	35	
Indeks Keragaman (H')	2,29	1,82	1,42	1,94	1,91	1,85	1,87	1,72	
Indeks Dominasi (d)	0,23	0,36	0,32	0,25	0,38	0,28	0,31	0,37	
Indeks Kemerataan (E)	0,89	0,79	0,79	0,88	0,83	0,84	0,81	0,78	
Kontrol									
Jumlah Individu)	47	35	36	35	38	40	41	39	
Indeks Keragaman (H')	2,11	1,80	1,74	1,75	1,53	1,80	2,07	1,69	
Indeks Dominasi (d)	0,21	0,34	0,33	0,71	0,34	0,27	0,19	0,30	
Indeks Kemerataan (E)	0,88	0,82	0,84	0,90	0,73	0,82	0,94	0,81	

DAFTAR PUSTAKA

KESIMPULAN

- 1. Aplikasi bioinsektisida berbahan aktif jamur entomopatogen *B. bassiana* tidak berpengaruh terhadap populasi hama di tanaman padi ratun. Persentase serangan serangga hama ditanaman padi ratun tertinggi terjadi pada petak kontrol ialah pada umur 7-8 msp.
- 2. Indeks keanekaragaman, indeks kemerataan dan indeks dominasi artropoda predator di tajuk tertinggi terjadi di petak kontrol. Di permukaan tanah indeks keanekaragaman dan indeks dominasi tertinggi terjadi di petak diaplikasikan yang bioinsektisida, tetapi indeks dominasi tertinggi terjadi di petak kontrol.

- Deciyanto S dan Indrayani IGAA. 2008. Jamur entomopatogen *Beauveria* bassiana: Potensi dan prospeknya dalam pengendalian hama tungau. *Perspektif.* 8(2):65-73.
- Herlinda S, Hamadiyah, Adam T dan Thalib R. 2006. Toksisitas isolatisolat *Beauveria bassiana* (Bals.) Vuill. terhadap nimfa *Eurydema pulchrum* (Westw.) (Hemiptera:Pentatomidae). *Agria* 2(2):34-37.
- Herlinda. S, S.I. Mulyati, dan Suwandi. 2008. Jamur Entomopatogen berformulasi Cair Sebagai Bioinsektisida untuk pengendali wereng coklat. *Jurnal Agritrop* 27(3):119-126.
- Herlinda S, Hartono, Irsan C. 2008. Efikasi Bioinsektisida Formulasi Cair Berbahan *Beauveria bassiera* dan *Metarhizium*.sp pada wereng punggung putih (*sogatella furcifera*) *Seminar Nasioanal dan Kongres PATPI* 2008. Palembang 14-16 oktober 2008.

- Herlinda S, Hertati D, Irsan C, Pujiastuti Y, Adam T, dan Khadijah. 2012. Keanekaraman spesies dan kelimpahan serangga entomofaga pada tanaman cabai yang diaplikasikan Beauveria bassiana untuk mengendalikan Aphis gossypii. Prosiding Seminar Nasional Menuju pertanian Berdaulat. Bengkulu, 12 September 2012.
- Irsan C. 2003. Predator, Parasitoid dan Hiperparasitoid yang Berasosiasi dengan Kutudaun (Homoptera:Aphididae) pada Tanaman Talas. *J.Hayati*. 10(2):81-84.
- Khodijah. 2013. Keanekaragaman komunitas artropoda predator tanaman padi yang aplikasi bioinsektisida berbasis iamur entomopatogen daerah rawa lebak sumatera selatan. Jurnal Lahan Suboptimal 2(1):43-49.
- Manuwoto S dan Indriyani N. 1994. Perkembangan kelangsungan hidup dan reproduksi wereng coklat pada empat jenis varietas padi. Ballitan-HPT. IPB. 64 p.
- Prayogo, Y., W. Tengkano Marwoto. 2005. Prospek cendawan entomopatogen Metarhizium anisopliae untuk mengendalikan ulat grayak Spodoptera pada litura Pertanian kedelai. J. Litbang. 24(1):19-26.

- Prayogo Y. 2006. Upaya Mempertahankan ke Efektifan Cendawan Entomopatogen untuk Mengendalikan Hama Tanaman Pangan. *Jurnal Litbang Pertanian* 25(2):47-54.
- Radianto I, Sodiq M, dan Nurcahyani NM. 2010. Keanekaragaman serangga dan musuh alami pada lahan pertanaman kedelai di kecamatan balong-Ponorogo. *Jurnal Entomologi Indonesia*. 7(2):116-121.
- Riyanto, Herlinda S, Irsan C, dan Umayah A. 2011. Kelimpahan dan keanekaragaman spesies serangga predator dan parasitoid *Aphis gossypii* di Sumatera Selatan. *J. HPT Tropika*. 11(1):57-68.
- Susilawati, Purwako B, Aswindinnor H dan Santosa G. 2012. Tingkat Produksi Ratun Berdasarkan Tinggi Pemotongan Batang Padi Sawa Saat Panen. J. Agron. Indonesia 40(1):1-7
- Suwandi, Ammar A dan Irsan C. 2012.

 Aplikasi ekstrak kompos meningkatkan hasil dan menekan penyakit pada sistem ratun di sawah pasang surut Kabupaten Banyuasin. *Jurnal Lahan Suboptimal*. 1(2):116-122.
- Thalib R, Hety U, Herlinda S, Effendy, Irsan C. 2010. Komunitas artropoda predator pada ekosistem padi dan lahan pinggir Sumatera Selatan. *Seminar Nasional PEI*, Jogjakarta 2 Oktober 2010.