DETEKSI TUMOR OTAK DENGAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN)
Abstract
Tumor otak merupakan salah satu pertumbuhan jaringan abnormal yang ditandai dengan pertumbuhan sel yang berlebihan di bagian otak tertentu. Pendeteksian tumor dapat dilakukan dengan menggunakan Convolutional Neural Network (CNN) dengan menggunakan library logistic regression sebagai pengkasifikasian. Pada pengujian dengan menggunakan data set sebanyak 1.222 image dengan positive tumor dengan dataset sebanyak 827 image dan no tumor dengan dataset sebanyak 395 image. Pada pengujian ini didapatkan hasil akurasi saat training sebesar 100% dan pengujian saat testing sebesar 95%. Pada pengklasifikasian ini dibagi menjadi dua yaitu positive tumor dan no tumor.
References
S. Y. Prasetyo and G. Z. Nabiilah, "Perbandingan Model Machine Learning pada Klasifikasi Tumor Otak Menggunakan Fitur Discrete Cosine Transform," Jurnal Nurul Fikri, vol. 9, no. 1, pp. 29-34, 2023.
T. Hidayat and R. A. Saputra, "Deteksi Tumor Otak menggunakan CNN," Jurnal Fikom, vol. 9, no. 2, pp. 94-98, 2023
T. A. Mutiara and Q. N. Azizah, "Klasifikasi Tumor Otak Menggunakan Ekstraksi Fitur HOG dan Support Vector Machine," Jurnal Infortech, vol. 4, no. 1, pp. 45-50, 2022.
A. S. Febrianti, T. A. Sardjono and A. F. Babgei, "Klasifikasi Tumor Otak Pada Citra Magnetic Resonance Image Dengan Menggunakan Metode Support Vector Machine," Jurnal Teknik ITS, vol. 9, no. 1, pp. 118-123, 2020.
W. Hasmoto, S. and S. , "Convulation Neural Network Arsitektur Mobilnet V2 Untuk Mendeteksi Tumor Otak," senTIK, vol. 5, no. 1, pp. 17-21, 2021.
H. Fonda, Y. Irawan and A. Febriani, "Klasifikasi Batik Riau dengan Menggunakan Convolutional Neural Network (CNN)," Jurnal Ilmu Komputer, vol. 9, no. 1, pp. 7-10, 2020.
D. Y. Utami, E. Nurlelah and F. N. Hasan, "Comparison of Neural Network Algorithms, Naive Bayes and Logistic Regression To Find The Highest Accuracy In Diabetes," JITE (Journal of Informatics and Telecommunication Engineering), vol. 5, no. 1, pp. 53-64,2021.
E. Listiana and M. A. Muslim, "Penerapan Adaboost Untuk Klasifikasi Support Vector Machine Guna Meningkatkan Akurasi Pada Diagnosa Chronic Kidney Disease.," Prosinding SNATIF, pp. 875-881, 2017.
J. Bohaju, "Brain Tumor," Kaggle.com, 2020. [Online]. Available: https://www.kaggle.com/datasets/jakeshbohaju/brain-tumor. [Accessed 11 December 2023].
M. Sandler, A. Howard, M. Zhu and A. Zhmoginov, "MobileNetV2: Inverted Residuals and Linear Bottlenecks," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4510-4520, 2018.
An author who publishes in the Jurnal Teknik Elektro (JTE) agrees to the following terms:
Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Submission of a manuscript implies that the submitted work has not been published before (except as part of a thesis, report, or abstract); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors. If and when the manuscript is accepted for publication, the author(s) still hold the copyright and retain publishing rights without restrictions. For the new invention, authors are suggested to manage its patent before publication. The license type is CC-BY-SA 4.0.
Jurnal Teknik Elektro (JTE)is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.